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Abstract. We introduce a view–point invariant representation of mov-
ing object trajectories that can be used in video database applications. It
is assumed that trajectories lie on a surface that can be locally approx-
imated with a plane. Raw trajectory data is first locally–approximated
with a cubic spline via least squares fitting. For each sampled point of
the obtained curve, a projective invariant feature is computed using a
small number of points in its neighborhood. The resulting sequence of
invariant features computed along the entire trajectory forms the view–
invariant descriptor of the trajectory itself. Time parametrization has
been exploited to compute cross ratios without ambiguity due to point
ordering. Similarity between descriptors of different trajectories is mea-
sured with a distance that takes into account the statistical properties of
the cross ratio, and its symmetry with respect to the point at infinity. In
experiments, an overall correct classification rate of about 95% has been
obtained on a dataset of 58 trajectories of players in soccer video, and
an overall correct classification rate of about 80% has been obtained on
matching partial segments of trajectories collected from two overlapping
views of outdoor scenes with moving people and cars.

1 Introduction

Given a trajectory of a moving object acquired from a video sequence, we in-
troduce a view–invariant representation of the trajectory based on algebraic
projective invariants. Our envisioned use case is a video database application
that returns all the objects whose trajectories are similar to a query trajectory,
regardless of the view point from which the video has been taken. The user
should be allowed to select both the object/trajectory of interest and the part
of the trajectory to be used for the matching process. Examples of contexts that
would benefit from such capabilities are sports videos and surveillance videos,
where multiple cameras are usually deployed to cover the scene. Similarity could
be measured across different views of the same object, for example to recon-
struct the entire trajectory of the object throughout the scene, or across views
of “similar” scenes, for example to retrieve players across multiple sports videos
that move in similar way, allowing semantic event understanding.
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More generally, this work is focused on analyzing multiple video streams
captured from fixed cameras distributed in an indoor or outdoor environment,
e.g., offices, classrooms, parking lots, a soccer field, etc. It is assumed that ex-
trinsic/intrinsic calibration information for the cameras is not available, and it
is not explicitly known if two or more cameras’ fields of view actually overlap.
Objects are assumed to move on surface that can be, at least locally, well ap-
proximated by a plane. Trajectories are acquired independently in each view,
and for each trajectory its representation is based on projective invariant fea-
tures measured at each observed point. For each point, the feature is computed
using a small number of points in its neighborhood. The resulting sequence of
invariant features computed along the entire trajectory forms the view–invariant
descriptor of the trajectory itself. The time parametrization is exploited to com-
pute (without ambiguity due to point ordering) the feature sequence. Once the
descriptor is computed, it can be stored together with the trajectory it belongs
to, to allow later retrieval. Since the descriptor is semi–local with respect to a
point of the trajectory, partial matching can be performed using the relevant
part of the descriptor. An example of this will be shown in Sect. 4.

To measure the similarity between two trajectory descriptors, a distance that
takes into account the properties of the cross ratio is adopted. The proposed
framework is tested both with synthetic data and with trajectories obtained from
real videos, one from a surveillance dataset and the other from a soccer game.
For each trajectory, we measure the distance with all the other trajectories for
corresponding time segments. In quantitative evaluation, matching is performed
with increasing levels of noise variance to verify the robustness of the method.

2 Related work

Several works have been proposed that investigate description, indexing and re-
trieval of video clips based on trajectory data. An important issue to be addressed
is to provide a trajectory representation for which the effect of the perspective
transformation due to the imaging process is minimized as much as possible.
Earlier video database applications typically ignore this view-dependence prob-
lem, simply computing similarity directly from image trajectories [5, 4, 9]. More
recent approaches have achieved some degree of invariance by using weak per-
spective models [2], or by recovering the image–to–world homography when an
Euclidean model of the ground plane is available [14]. Such a method is not
always viable, for example one could be interested to detect interesting patterns
of people that move across public places, such as squares or stations, for which
an Euclidean model of the scene could not be available. The proposed method
allows to directly compare the projective invariant representation of each trajec-
tory with either prototypes of interesting trajectories, for which their invariant
representation has been precomputed, or with trajectories selected by the user.

In the context of video analysis for surveillance, trajectories have been used
to align different views of the same scene using geometric constraints. In fact, it
has been observed how trajectory data can be more reliable than static feature



points under wide variations in the viewpoint. In [10], objects are moving over a
common ground plane which is captured from cameras with significant overlap,
and the perspective plane correspondence is recovered using a robust estima-
tion of homography between each camera pair. Here, moving objects are used as
“markers” to recover point correspondences. Caspi and Irani [3] extended this
approach to deal with non-planar trajectories, while also taking advantage of
the temporal nature of the data. Their method recovers the fundamental ma-
trix or the homography between two views, and can deal with asynchronous
observations. Synchronized planar trajectories have been instead used in [15] to
recover the correspondence model both for the cases of overlapping and non–
overlapping cameras, to produce plausible homographies between two views.
Each of the above methods explicitly recovers the geometric relation between
different views, using either a homography or a fundamental matrix. Our method
is suitable for solving a crucial step of all these approaches, which is to provide
pairwise correspondence between trajectories, to initialize the registration algo-
rithm. Furthermore, if the application only requires that each object is being
stored with its (view–invariant) tracks, our representation can be used to this
end without actually performing image registration.

Our approach is closely related to methods developed in the context of invari-
ant model–based object recognition. Invariant theory is a classical mathematical
theory, with results dating back to antiquity. Two invaluable references on the
subject are [11, 12]. The method presented in [13], and recently used in [7], uses
four points on a given object to establish a map with a canonical frame where a
fifth point along the outline of the object has projective invariant coordinates.
In [17], semi–differential invariants, constructed using both algebraic and differ-
ential invariants have been introduced. With respect to the above approaches,
our method is more suited to the task of describing trajectories, in particular
allowing for configurations of collinear points that often occur along trajectories.

3 View–invariant trajectory representation

We are given a set of time–indexed trajectories of the form T = {p(ti)}, p(ti) =
(x(ti), y(ti)), i = [1 . . . n], where (x(ti), y(ti)) are image coordinates and [ti . . . tn]
are discrete time indices. It is assumed that at least locally, trajectories approx-
imately lie on a planar surface. We want to derive a view point–invariant rep-
resentation of such trajectories of the form ξ(ti), where each point is computed
over a “small” neighborhood of p(ti):

ξ(ti) = f(p(ti − δti) . . . p(ti + δti)).

The function f must be invariant to planar projective transformations. Theoreti-
cally, given a curve in parametric form and its first eight derivatives, it is possible
to find such signature in analytic form [18]. If the curve is given in implicit form,
e.g. in the form g(x, y) = 0, at least four derivatives are necessary. Computing
high order derivatives is known to be highly sensitive to noise. Since our data



(a)

P1

P2

P3

P4

P5

(b)

p1

l1

l2 l3

l4

q

p(t) = p3

P(t-k) = p2

P(t-2k)

P(t+k) = p4

P(t+2k) = p5

Fig. 1. a) 5 coplanar points that can be used to compute a cross ratio - b) The con-
struction used in our method to compute cross ratios along the curve: p1,p2,p3,p4,p5

are the points used to compute the cross ratio for p(t).

will come from a person or object tracking algorithm, we would need to fit high
order parametric curves, which would be prone to over-fitting, especially in the
case of simple, but noisy, trajectories. Given these considerations, we decide to
use point–based projective invariants to avoid the problem of fitting high order
curves.

The most fundamental point–based projective invariant in the plane is the
cross ratio of five coplanar points, no three of which are collinear (Fig. 1(a),
see also [11], Chapter 1). Two independent cross ratios can be computed from
this configuration. If points are expressed in homogeneous coordinates, the cross
ratio takes the form:

τ =
|m125||m134|
|m124||m135| (1)

where mijk = (pi,pj,pk) with pi = (x(ti), y(ti), 1)t and |m| is the determi-
nant of m. The point p1 is the reference point. If points p2 . . .p5 are collinear,
the cross ratio becomes independent of p1, and it is reduced to the cross ra-
tio of the distances between points on the segment joining p2 and p5. Under
planar perspective transformations, the cross ratio (1) is unchanged. However,
its value depends on the order of the points used to compute it; for instance:
τ(p1,p2,p3,p4,p5) �= τ(p1,p2,p3,p5,p4). This is a serious issue in model–
based object recognition, since usually point correspondences are unknown, and
one needs to rely on projective and permutation invariant features. Although
such features have been derived [16], it is known that permutation invariant fea-
tures turn out to be considerably less stable and less discriminative than features
computed on labeled points.

Since in our case trajectories are time–indexed sets of points, we have a nat-
ural parametrization that allows us to compute the cross ratio using a predefined
point ordering. However, choosing the points along the trajectory to be used in
the cross ratio is non trivial, since we need to ensure that at least the reference
point is not aligned with the other points, otherwise the cross ratio is undefined.
A potential solution is to choose points p2 . . .p5 on the trajectory, and p1 off



the trajectory, such that even if p2 . . .p5 are aligned, the cross ratio can still be
computed and reduces to the cross ratio of four collinear points under a suit-
able choice of the point order. However, to obtain a consistent feature, the point
p1 must be chosen according to a projective invariant construction, otherwise
a feature computed using an arbitrary point off the trajectory would be just
meaningless.

A simple but effective method is sketched in Fig. 1(b) and detailed in Algo-
rithm 1. For each point p(ti) along the curve, four other points p(ti−2k),p(ti−
k),p(ti + k),p(ti + 2k) are used to compute the representation value of the
current point. k is a time interval that controls the scale at which the repre-
sentation is computed. The greater is k, the less local the representation. The
points are first locally smoothed using a cubic spline fitted via least squares.
If (xr(ti), yr(ti)) are the raw data, the local feature is computed with points of
the form (xs(ti), ys(ti)) obtained from the fitted spline at corresponding time
indices.

This construction can always be computed, provided that there are no four
collinear points. With respect to of Fig. 1(a), if points p2,p3,p4,p5 are collinear,
then the cross ratio becomes independent of the choice of p1. Hence, if collinear-
ity is detected, we simply use the collinear points to compute a 4–point cross
ratio. If collinearity is not detected, points p(ti−2k),p(ti−k),p(ti+k),p(ti+2k)
are used to compute the point q, and then the intersection between the lines de-
fined by segments p(ti),q and p(ti −2k),p(ti +2k) is chosen to be the reference
point for the cross ratio. Being based on collinearity and intersection between
points, the construction is obviously projective invariant. The projective invari-
ant representation of the trajectory is the sequence of the cross ratios computed
along the trajectory at each ti. The parameter k controls the locality of the rep-
resentation. In principle, a small k is desirable, since it would give a more local
representation for matching partial trajectory segments. However, this must be
traded–off with the informative content of the resulting transformed sequence,
since on smaller scale the cross ratios tend to assume very similar values. In our
experiment, we verified that for objects like people and cars, a good choice is to
select k approximately equal to the observation rate.

3.1 Comparing trajectories

In [1], it is shown that a probability density function for the cross ratio can be
computed in closed form, together with the corresponding cumulative density
function. A distance measure derived from this function has been proposed in
[8] in the context of object recognition. This measure has the property of stretch-
ing differences of cross ratios of big values, which are known to be less stable.
Moreover, it takes into account the symmetric properties of cross ratios, in par-
ticular the fact that there are two ways to go from one cross ratio to another:
one passing through the real line, and the other through the point at infinity. We
have verified experimentally that the invariant feature described above obeys the
distribution derived in [1], although input points are not exactly independent.



Algorithm 1 Computing the feature for a point p(ti)
p(ti) the current point, obtained from the local spline approximation of the raw data
(i = [1 . . . n]); k predefined time interval
p1,p2,p3,p4, p5 the points used for computing the cross ratio
p2 ← p(t− k),p3 ← p(t),p4 ← p(t + k),p5 ← p(t + 2k)
if p2,p3,p4,p5 are collinear then
Compute the cross ratio of four collinear points using p2,p3,p4,p5

ξ(ti) =
|p2−p5||p3−p4|
|p2−p4||p3−p5|

else
l1 = p(t− k)× p5 line through p(t− 2k) and p5

l2 = p(t− 2k)× p4 line through p(t− 2k) and p4

q = l1 × l2 intersection between l1 and l2
l3 = p(ti)× q line through p(ti) and q
l4 = p(t− 2k)× p5 line through p(ti − 2k) and p5

p1 = l1 × l4
Compute the cross ratio of p1, p2,p3,p4,p5

ξ(ti) =
|m125||m134|
|m124||m135|

end if

Hence, to compare two cross ratios τ1 and τ2, we use their distance with respect
to the cumulative distribution function:

d(τ1, τ2) = min(|F (τ1) − F (τ2)|, 1 − |F (τ1) − F (τ2)|)

where F (x) is defined as follows:

F (x) =




F1(x) + F3(x) if x < 0
1/3 if x = 0
1/2 + F2(x) + F3(x) if 0 < x < 1
2/3 if x = 1
1 + F1(x) + F2(x) if x > 1

F1(x) = 1
3

(
x(1 − x)ln(x−1

x ) − x + 1
2

)
,

F2(x) = 1
3

(
x−ln(x)−1

(x−1)2

)
,

F3(x) = 1
3

(
(1−x)ln(1−x)+x

x2

)
.

Given two trajectories T1 = (x1(ti), y1(ti)), T2 = (x2(ti), y2(ti)) and the
corresponding invariant representation ξ1(ti), ξ2(ti), their distance is defined as
follows:

D(T1,T2) =
n∑

i=1

d(ξ1(ti), ξ2(ti)).
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Fig. 2. Three views of three of the synthetic trajectories used to test the algorithm.

4 Experimental results

The proposed method has been tested on three different sets of data. In the
first experiment, we generated several planar trajectories, and we applied two
different homographies to obtain the views shown in Fig.2 for three sample tra-
jectories. Each trajectory was uniformly sampled in the first view, and then
the “observed” points were projected into the other views and corrupted with
Gaussian noise to simulate the effect of the measurement error. Each curve con-
sisted of about 300 points, and we set k = 10. This value was appropriate to
capture the overall shape of the trajectory in the neighborhood of a given point.

The experiment was repeated for increasing levels of the noise variance, up
to approximately 20% of the average distance between points. Up to this level, it
was observed that the method is always able to recover the correct match, while
further increasing the amount of noise produced correspondences that were no
longer valid.

In the second experiment, we used a dataset made available for the VS–PETS
2001 workshop1. It consists of a video from a soccer game, taken from a fixed
position. There are 58 trajectories in this dataset, although some of them are
very short and have not been considered for the matching test. Two views of the
trajectories were generated from the data, and noise was added independently to
simulate the effect of measurement error. For this and the following experiment,
we set k = 25. We verified experimentally that this value is suitable for trajec-
tories that shown a sufficient degree of variability for our method, such as those
of players in a soccer game. Fig.3 shows the results obtained for different level
of noise, up to 10% of the average distance between points on the trajectories.
The correct overall classification rate, (correct/total) was 95%, 81% and 65%
respectively. As can be expected, it was observed that the more long and varying
the trajectory is, the more robust the match.

In the third experiment, we used another dataset from the VS-PETS work-
shop. In this dataset, two cameras observe the same outdoor scene from two
widely separated points of view with a significant overlap (Fig.4). The scene
features a number of moving persons and cars. Time–aligned positions of the

1 http://peipa.essex.ac.uk/ipa/pix/pets/PETS2001/DATASET1/



Fig. 3. From left to right: results obtained from the soccer dataset for Gaussian noise
with variance 0, 5% and 10% of the average distance between points. Element i, j of
the matrix is the distance between trajectories i and j (darker means closer). The red
square on each line indicates the best match. White lines correspond to very short
trajectories that have not been used for matching.

image–centroid are provided for each object through the entire sequence for both
views. This was the most challenging experiment because most trajectories take
place in the region of overlap only for a short time. We used the same approach
described in the previous experiments to recover similarity between trajectories
across views, except that this time artificial noise was not added since with inde-
pendent tracking data in both views was provided. Moreover, trajectories were
compared only using the part of the descriptor related to their common temporal
support, to verify the performance in the case of partial matching. The results
are shown in Fig. 5(a) in the form of a distance matrix, where intensity level are
distance measures (darker means closer). It can be seen that the correct corre-
spondence was almost always the best match; the overall correct classification
rate was about 80%. It is also interesting to notice how similar trajectories can be
clearly identified in the distance matrix with a connected block of low–distance
values; for example, trajectories 3, 4 and 5 come from observing people walking
together, and so do trajectories 8 and 9.

In two cases the matching method failed (trajectories 13 and 14, highlighted
with crosses in Fig.5). The first false match was due to a trajectory of a person
suddenly turning and walking back. This introduced a discontinuity in the tra-
jectory that was not reflected in the corresponding invariant representation. In
the second case, the object appeared in the region of overlap for a very limited
time, hence the observed trajectory was too short to be distinctive.

5 Discussion

We proposed an algorithm that matches trajectories of objects moving over a
locally–planar surface across different perspective views. We derived a trajectory
representation based on projective invariant features that can be computed using
information extracted only from the trajectory itself. The distance measure from



Fig. 4. Examples of correctly matched trajectories from the surveillance videos super-
imposed on the background image of the two views.
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Fig. 5. a) Distances between time–aligned trajectories across the two views. Darker
means closer, crosses indicate failed cases - b) Trajectories corresponding to the group
highlighted in yellow in the distance matrix.

two trajectories is derived from the distance between two cross ratios, which in
turn is related to the probability density function of the cross ratio.

Preliminary experimental results showed that the algorithm is quite robust
to noise in the case of synthetic generated data, and that it can reliably discover
similarity between real world trajectories, such as those of people or cars.

Since the algorithm is based only on information extracted from the trajec-
tory, a potential problem may arise in scenes where multiple objects move on
similar trajectories at similar speed (for instance, pedestrians walking across a
square). In this situation, the algorithm cannot differentiate between trajecto-
ries. To overcome this problem, other features should be considered, in particular
those based on object’s appearance such as proposed in [6].

Several other improvements could be made to the basic algorithm. For exam-
ple, matching trajectories across different but similar video streams would benefit
from a similarity measure performed at different scales, whereas the current for-
mulation operates at only one scale. At the coarser scale, the descriptor would
capture the overall shape of the trajectory, ruling out obvious false matches,
while decreasing the value of k would help to discriminate between trajecto-



ries at a finer level. In the case of streams obtained from different views of the
same scene, it would be interesting to recover the time alignment if this is is not
provided, in particular under conditions of partial overlap.
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1. K. Åstrom and L. Morin. “Random Cross Ratios”. Report RT 88 IMAG–LIFIA,
1992.

2. F. Bashir, A. Khokhar, and D. Schonfeld. “A hybrid system for affine-invariant tra-
jectory retrieval”, Proc. of ACM SIGMM International Workshop on Multimedia
Information Retrieval, 2004.

3. Y. Caspi, D. Simakov, and M. Irani. “Feature-Based Sequence-to-Sequence Match-
ing”. Proc. of VMODS Workshop, 2002.

4. W. Chen, S.-F. Chang. “Motion Trajectory Matching of Video Objects”. Proc. of
Storage and Retrieval for Media Databases, 2000.

5. S.-F. Chang, W. Chen, H. J. Meng, H. Sundaram, and D. Zhong. “VideoQ: An
Automatic Content-Based Video Search System Using Visual Cues”. Proc. of ACM
Multimedia, 1997.

6. A. Efros, A. Berg, G. Mori and J. Malik. “Recognizing Action at a Distance”. Proc.
of ICCV, 2003.

7. R. Fergus, P. Perona, and A. Zisserman. “A Visual Category Filter for Google
Images”. Proc. of ECCV, 2004.

8. P. Gros. “How to Use the Cross Ratio to Compute Projective Invariants from Two
Images”. Proc. of Application of Invariance in Computer Vision, 1993.

9. V. Kobla, D. Doermann, and C. Faloutsos. “VideoTrails: representing and visual-
izing structure in video sequences”. Proc. of ACM Multimedia, 1997.

10. L. Lee, R. Romano, and G. Stein. “Monitoring Activities from Multiple Video
Streams: Establishing a Common Coordinate Frame”. IEEE TPAMI, 2000.

11. J. Mundy and A. Zisserman, editors.“Geometric Invariance in Computer Vision”.
MIT Press, Cambridge, MA, 1992.

12. J. Mundy and A. Zisserman, editors. “Applications of Invariance in Computer
Vision”. Springer LNCS, 1994.

13. C. Rothwell, A. Zisserman, D. Forsyth, and J. Mundy. “Planar Object Recogni-
tion Using Projective Shape Representation”. International Journal of Computer
Vision, 1995.

14. Shim, C.B., Chang, J.W. “Efficient similar trajectory–based retrieval for moving
objects in video databases”. Proc. of CIVR, Springer LNCS, 2003.

15. Chris Stauffer, Kinh Tieu. “Automated multi-camera planar tracking correspon-
dence modeling”. Proc. of CVPR, 2003.

16. T. Suk and J. Flusser. “Point projective and permutation invariants”. Proc. of
Computer Analysis of Images and Patterns, Springer LNCS, 1997.

17. L. Van Gool, P. Kempenaers, and A. Oosterlinck. “Recognition and semi-
differential invariants”. Proc. of CVPR, 1991.

18. Isaac Weiss. “Differential invariants without derivatives”. Proc. of IEEE ICIP,
1992.


